
STEM for VA:

Linear Algebra
Mohan Shankar

mjs7eek@virginia.edu

These notes entail what I used when giving the very first talk of STEM for Virginia on February 28th, 2024.
They are self-contained for the scope of the talk, requiring nothing more than middle school math—I think. It’s
been a while since I’ve been in middle school though. This is not to say that linear algebra is easy or limited
in scope; all I mean is that the things I show will be fairly straightforward, belying the full complexity of the
subject. That being said, I hope the talk still conveys some of its beauty and utility.

Abstract: The hero of today’s story will be a matrix. The “villain,” a system of linear equations. This document
will introduce readers to two ways of solving a linear system of equations using matrix-vector notation. We
also introduce the concept of an eigenvalue (λi) and eigenvector (v⃗λ) though we omit any explanation for a
systematic way to find them. Equipped with this knowledge, we will present readers a few simplified models to
display the real-world utility of these concepts.

Contents

§0 Introduction 2

§1 Linear Systems of Equations and Gaussian Elimination 3
1.1 Matrix and Vector Notation . 4

§2 Matrix Operations 5
2.1 Eigenstuff . 6
2.2 General Topics . 7

1

2 0. Introduction

0 Introduction
To avoid shooting myself in the foot when considering future talks, I’d like to define some things more formally
here. The three main objects you will encounter in linear algebra are sets, vector spaces, and vectors.

Set: A collection of non-repeating objects. If a certain object is in a set, it is referred to as an “element”
of the set. Curly brackets { } will be used to denote something is a set.

Example. The set of all pitbulls, the set of all real numbers (R), the set of all complex numbers (C), etc.

Vector Space: A linear vector space V is a collection of objects |1 >, |2 >, ..., |v >, |w >, ... called vectors for
which there exists

I. A definite rule for a vector sum denoted |v > +|w >

II. A definite rule for multiplication by scalars (i.e. numbers) α, β, γ, ... denoted by α|v >

where the result of these operations results in another element of the vector space— a result known as closure:

|v > +|w > = |x > ∈ V

α|v >= |z > ∈ V

Here, ‘∈’ denotes membership of a set. Here, I use |v > rather than v⃗ to introduce the abstraction that says a
vector needn’t be an arrow.

Example. Examples of vector spaces include Rn which is a vector space of a column vector with n elements
which are real numbers, Pn(R) which is the vector space containing polynomials of degree n, Rnxm which is a
vector space of nxm matrices where n can equal m, etc. Similar to subsets of sets, you can have subspaces of
vector spaces.

Numbers α, β, ... are the field over which the vector space is defined. A field is an algebraic structure, and is
a set on which addition, subtraction, multiplication, and division are defined. Frankly, I’m not sure what the
implication of this is other than to say vectors themselves are neither real nor complex, only their elements.

For the sake of this talk, we can take a “vector” to mean a column vector which I’ll denote with an arrow
over a lowercase letter as such: v⃗. If there is a subscript with the arrow like v⃗i, I’m denoting the vector has i
components. A lowercase letter without the arrow but with a subscript like vi corresponds to the ith component
of a vector.

Example.

v⃗ =

15
π

is an example of a vector in R3 meaning our column has three components, all of which are real numbers. v⃗i
would mean i = 3, and starting our indexing at 1, v2 would be 5 while v3 = π.

Matrices will be denoted by capital letters with a fancy hat such as Â. They will be vectors of the vector space,
Rn×m, n referring to the number of rows and m the number of columns. Similarly to the vector, dropping the
hat and adding subscripts means I’m referring to a particular component of that matrix.

Example.
Â =

[
1 7
2 e

]
Âij = Â2,2 where i corresponds to the number of rows the matrix has and j the number of columns. Indexing
the same way, A1,1 = 1, A1,2 = 7, A2,1 = 2, A2,2 = e.

3 1. Linear Systems of Equations and Gaussian Elimination

1 Linear Systems of Equations and Gaussian Elimination
The central problem of linear algebra is solving linear equations. The nicest case is when the number of
unknowns matches the number of equations:

1x+ 2y = 3 (1.1)
4x+ 5y = 6 (1.2)

where x and y are unknowns. There are two key procedures we can use here:

I. Gaussian Elimination: The essence of this method is to use “row operations” to simplify your system.
The three row operations are multiplying both sides of an equation by a number (scalar), adding/subtracting
equations from one another, and re-ordering equations (i.e. 1.1 becomes 1.2 and vice versa).

Example. Here, we can do the following: 1.2 - 4 × 1.1 which leaves

1x+ 2y = 3

0x− 3y = −6

We can easily see that y = 2. From here, we can substitute 2 for y in the first equation to see 1x+ 2(2) = 3 →
x = −1. You can, of course, check to see that these values of x and y satisfy 1.1 and 1.2 by substituting them
back in.

II. Determinants I’ll write down the formula to solve for y and x before explaining why it holds true. The
key is that y and x are completely specified by the six numbers (1, 2, 3, 4, 5, 6) in the equations.

y =

∣∣∣∣1 3
4 6

∣∣∣∣∣∣∣∣1 2
4 5

∣∣∣∣ =
1 · 6− 3 · 4
1 · 5− 2 · 4

=
−6

−3
= 2

x =

∣∣∣∣3 2
6 5

∣∣∣∣∣∣∣∣1 2
4 5

∣∣∣∣ =
3 · 5− 2 · 6
1 · 5− 2 · 4

=
3

−3
= −1

Here, the vertical lines || denote the determinant of the entries they enclose. You can alternatively write det(Â)
where Â is a matrix as both specify the same procedure. To motivate where it comes from, let’s imagine a
general system of two equations where we wish to find x and y:

ax+ by = r1 (1.3)
cx+ dy = r2 (1.4)

If we multiply 1.3 by d and 1.4 by b:

dax+ dby = dr1

bcx+ bdy = br2

Subtracting the two equations produces

(da− bc)x = dr1 − br2

bcx+ bdy = br2

Focusing on the top equation now, we see
x =

dr1 − br2
da− bc

in general. This is the exact same procedure we leverage above! If you want to find y, you instead multiply by
a and c then follow the same process.

Note. If you had a very large number of equations and unknowns, the determinant route of solving the system
of equations would work, but it would be remarkably slow. Instead, we’d opt for Gaussian elimination as the
algorithms developed for its implementation have a much better (i.e. faster) run time.

4 1. Linear Systems of Equations and Gaussian Elimination

1.1 Matrix and Vector Notation
As mentioned in the introduction of this text, I’ll denote a matrix using an uppercase letter with a hat, and,
if I remember, subscripts that represent the number of rows and columns the matrix has.

Âij =

A11 A12 A13 . . . A1j

A21 A22 A23 . . . A2j

A31 A32 A33 . . . A3j

...
...

...
Ai1 Ai2 Ai3 . . . Aij

Here, we see that Â has i rows and j columns as specified by its subscript. Dropping the hat but leaving the
subscript refers to that specific element of Â.

A vector will be denoted using a lowercase letter with an arrow above it. A subscript will also be added
should I remember. Similarly to the matrix case, a lowercase letter with subscript but without an arrow refers
to that component of the vector.

v⃗i =

v1
v2
...
vi

The above mathematical object is called a “column vector” and its counterpart, a “row vector” would be the
same thing just turned on its side. To get from a column to a row vector and vice versa, you take what’s called
the transpose denoted by a superscript T. Going back to v⃗i above, we can write:

v⃗i =

v1
v2
...
vi

 → v⃗Ti =
[
v1 v2 . . . vi

]

Though this idea won’t come back up for a bit, I introduce you now to acquaint you with the idea that a column
vector is an i× 1 matrix. That is, a column vector has i rows and 1 column. On the other hand, a row vector
is a 1× j matrix meaning it has 1 row and j columns. The heart of the transpose lies in swapping these indices,
thus it can apply to i× j matrices as well.

Now, let’s get back to solving equations. Suppose we now have 3 equations and 3 unknowns:

2u+ v + w = 5 (1.5)
4u− 6v + 0w = −2 (1.6)

−2u+ 7v + 2w = 9 (1.7)

We can re-package this system of equations using vectors and matrices!

Â =

 2 1 1
4 −6 0
−2 7 2

 −→ x⃗ =

u
v
w

 −→ b⃗ =

 5
−2
9

 =⇒ Âx⃗ = b⃗

Note. Using A, x, b are entirely arbitrary but have become convention.

For this re-packaging to work, we must define matrix vector multiplication (i.e. Âx⃗) to reproduce the
original system. To do this, we will multiply the elements of row i of Â by the elements in the column vector
before summing them up. As an example, let’s consider the first row of Â:

[
2 1 1

] u
v
w

 =
[
2 · u+ 1 · v + 1 · w

]
(1.8)

Since we consider things element wise in the equation Âx⃗ = b⃗, we then see that [2u + w + v] = [5], the first
element in b⃗. The key thing to note here is that this process only works if the number of columns in Â is equal
to the number of rows in x⃗. As a shortcut, we can write out Âx⃗ by column:

5 2. Matrix Operations

Âx⃗ = u

 2
4
−2

+ v

 1
−6
7

+ w

10
2

 =

 5
−2
9

Why this is useful is because it will allow us to “drop” x⃗ and focus solely on the coefficients and constants. We
do this by creating an augmented matrix. 2 1 1 5

4 −6 0 −2
−2 7 2 9

Here, the numbers arranged to the left of the vertical line is the exact same as Â while the numbers to the right
represent b⃗. We can and will use Gaussian elimination to shave down Â until it has only 1’s on the diagonal.
Considering the initial system of equations, this would be the same as writing

1u+ 0v + 0w = ∗
0u+ 1v + 0w = ∗
0u+ 0v + 1w = ∗

thus we wouldn’t have to bother with back substitution.

 2 1 1 5
4 −6 0 −2
−2 7 2 9

 ∼=

 1 1/2 1/2 5/2
4 −6 0 −2
−2 7 2 9

 ∼=

 1 1/2 1/2 5/2
0 −8 2 −12
−2 7 2 9

 → ... →∼=

1 0 0 1
0 1 0 1
0 0 1 2

Here, “∼=” denotes an equivalence that is not the same as equality. The systems remain unchanged in the sense
that we haven’t done anything mathematically illegal, but one form isn’t equal to the next.

To get from the first form to the second, we divide the first row by 2 to get a 1 in the first column. From
there, we perform Row 2 - 4 x Row 1 to get a zero in the second row’s first column. We would then make
the second column’s second row element 1 and clear out everything else in the column, leaving only 1’s on the
diagonal. While we do this, we must make sure we’re also updating the value of b⃗ when performing these row
operations. Using our shortcut:

Âx⃗ = u

10
0

+ v

01
0

+ w

00
1

 =

11
2

 = b⃗

thus we see u = 1, v = 1, and w = 2.

2 Matrix Operations
As shown in 1.8, matrix vector multiplication works by multiplying across rows and down columns. We can
extend this definition to matrix-matrix multiplication by iterating through the columns of the left matrix and
down the rows of the right matrix. Pictorially, it would look something like this:

Figure 1: Schematic for matrix multiplication.

6 2. Matrix Operations

If we want c2, we would take the same row of A next column of B,

[
a1 a2 a3

] b2b5
b8

Symbolically, we can express matrix-matrix multiplication as

ÂijB̂jk = Ĉik →
∑
j

AijBjk = Cik (2.1)

Here, the ‘
∑

’ symbol means “sum” while the j means sum over the jth elements. i corresponds to the rows of
Â while j the columns. In the case of B̂, j corresponds to the rows of B̂ while k the columns.

To find the element C11, we let i, j, k be 1. If we refer back to Fig. 1, A1,j refers to the row a1, a2, a3 and
Bj,1 is the column b1, b4, b7 since j starts at 1 and ends at 3. a1 · b1 + a2 · b4 + a3 · b7 = c11. Based on this
formula, we see that for matrix multiplication to work, the left matrix must have the same number of columns
as the number of rows in the right columns.

Example. [
1 2
3 4

] [
5
6

]
=

[
1 · 5 + 2 · 6
3 · 5 + 4 · 6

]
=

[
17
35

]
Example. [

1 2
3 4

] [
5 6
7 8

]
=

[
1 · 5 + 2 · 6 1 · 6 + 2 · 8
3 · 5 + 4 · 6 3 · 6 + 4 · 8

]
=

[
17 22
35 50

]
Out of curiosity, what happens if we switch the order of multiplication?[

5 6
7 8

] [
1 2
3 4

]
=

[
5 · 1 + 6 · 3 5 · 2 + 6 · 4
7 · 1 + 8 · 3 7 · 2 + 8 · 4

]
=

[
23 34
31 46

]
From this example, we see that matrix multiplication does not always commute. That is, ÂB̂ ̸= B̂Â all the
time.

2.1 Eigenstuff
For our next set of examples, let

Â =

[
1 2
0 3

]
−→ v⃗ =

[
1
1

]
−→ u⃗ =

[
1
0

]
.

If we multiply Âv⃗ and Âu⃗, [
1 2
0 3

] [
1
1

]
=

[
1 · 1 + 2 · 1
0 · 1 + 3 · 1

]
=

[
3
3

]
= 3 ·

[
1
1

]
[
1 2
0 3

] [
1
0

]
=

[
1 · 1 + 2 · 0
0 · 1 + 3 · 0

]
=

[
1
0

]
= 1 ·

[
1
1

]
Unlike our last examples, these matrix-vector multiplications returned our initial vectors and a scalar. We’ve
found something very special! It turns out that there is a special name for this relationship between matrix,
vector, and scalar.

v⃗ and u⃗ are eigenvectors of the matrix Â. Their respective eigenvalues are 3 and 1. It’s interesting to note
that eigen- means “own” or “inherent” in German, which is why it crops up here. The eigenvectors and their
corresponding eigenvalues are inherent to the matrix itself as they don’t get transformed beyond scaling (i.e.
getting stretched or squished). There’s a way to systematically determine all eigenvalues and eigenvectors in
that order using the determinant, but I’ll mention it at a later talk. If you look into it yourself, you might find
the equation

Âv⃗ = λv⃗ (2.2)

Where λ ∈ R is the eigenvalue and v⃗ its associated eigenvector for Â.

7 2. Matrix Operations

2.2 General Topics
In the event that future talks require linear algebra, I’d like to cover these topics now.

Matrix Exponentiation: Repeated matrix multiplication

Ân = Â · Â · ... · Â︸ ︷︷ ︸
n times

Matrix Inverse:
If ∃ Â−1 s.t. ÂÂ−1 = Â−1Â = I

Â−1 is the inverse of Â as multiplying Â with its inverse produces I the identity matrix.

Example.
Â =

[
2 1
1 3

]
and Â−1 =

[
3/5 −1/5
−1/5 2/5

]
Let’s try ÂÂ−1 first:

ÂÂ−1 =

[
2 1
1 3

] [
3/5 −1/5
−1/5 2/5

]
=

[
{2 · (3/5) + 1 · (−1/5)} {2 · (−1/5) + 1 · (2/5)}
{1 · (3/5) + 3 · (−1/5)} {1 · (−1/5) + 3 · (2/5)}

]
=

[
1 0
0 1

]
Now, Â−1Â

Â−1Â =

[
3/5 −1/5
−1/5 2/5

] [
2 1
1 3

]
=

[
{(3/5) · 2 + (−1/5) · 1} {(3/5) · 1 + (−1/5) · 3}
{−(1/5) · 2 + (2/5) · 1} {−(1/5) · 1 + (2/5) · 3}

]
=

[
1 0
0 1

]
Transpose: Swapping elements via flipping indices. ÂT

ij = Âji which is useful when making dimensions for
matrix-matrix, matrix-vector, or vector-vector multiplication work.

Example.

Â =

1 2 3
4 5 6
7 8 9

 −→ ÂT =

1 4 7
2 5 8
3 6 9

Note that elements along the diagonal (where i = j in Aij) do not get flipped.

	Introduction
	Linear Systems of Equations and Gaussian Elimination
	Matrix and Vector Notation

	Matrix Operations
	Eigenstuff
	General Topics

